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Aggregation processes with n-particle elementary reactions 
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Zhukovsky-3, Moscow region, USSR 
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Abstract. We study aggregation processes o f  n-particle coalescence by means of a general- 

solution i s  obtained and the scaling behaviour far the cluster-mass dis!ribution is observed. 
A model with sum-kernel reaction rates is also studied and an exact solution for a 
monodimem inilial distribulion i s  found. 
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1. Introduction 

Aggregation processes have attracted considerable interest in many apparently unre- 
lated fields of science and technology. Examples can be found in such diverse subjects 
as colloid science, polymerization, cloud dynamics, aerosol physics, biology, dairy 
research and astrophysics. Consequently, it is of great practical and theoretical interest 
to possess mathematical prediction concerning the evolution of aggregating systems. 
Typically, such processes are described by the binary reaction scheme 

where A, denotes an aggregate consisting of j monomers (j-mer) and K ( i , j )  is the 
rate at which reaction proceeds. This last depends on the respective sizes i and j of 
the reacting aggregates i n  a way that is essentially model dependent. 

It is, however, quite clear that in a variety of physical and chemical applications 
aggregation by n-body collisions can also take place. The goal of the present study is 
to investigate these types of reactions symbolized as 

K ( i \  ..... I , , )  

Aic+. .  .+A,,- At,+ ...+ s,,. 

We believe that a thorough study of n-tuple coalescence will contribute towards a 

The kinetics in the mean-field limit, where spatial fluctuations in cluster density 
and cluster shape are neglected, is adequately described by Smoluchowski's coagulation 
equation for the systems aggregating by two-body collisions 11-31, A similar equation 
describes the aggregation by n-body collision [4]: 

d cx 

df I , +  ...+ i , , = X  I ,..... I ,,., 

bet!er ur?dcrs!anding of genera! aggrega!ion processes: 

- 1 K ( i j !  . . .  ~ in)Cj: . . .  C , ; ? - n G  2 K ( k ,  i ,  ,...,;,,- l)Crc ... CL.!. _- 
. .  

(1) 

In ( 1 )  I is time and C, is the concentration of k-mers. The gain terms on the right-hand 
side describe a formation of k-mers out of smaller clusters by n-body collisions and 
the loss terms describe a removal of k-mers due to reactions with other aggregates. 
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For the usual Smoluchowski equation, exact solutions have been constructed for 
three types of reaction rates: constant kernel K ( i ,  j )  = constant, sum kernel K (  i, j )  = i + j  
and product kernel K ( i ,  j )  = 0 (see e.g [Z, 3,51 and references therein). It is therefore 
natural to look for similar solutions of the generalized Smoluchowski equation ( I ) .  
The exact solutions for the product kernel with a monodisperse initial distribution 
have recently been found by Yu Jiang and Hu Gang [41 (see also very recent papers 
[6,7]). In this work we consider the generalized Smoluchowski equation with two 
other types of the reaction kernel and construct the general solutions. 

2. Constant kernel 

We start our study with the simplest model of constant reaction rates, K (  i,, . . . , i") = I .  
In this case we have 

where 
ec 

N = E  Ck 
k r l  

(3) 

is the total number of the clusters in the system. Summing all equations (2) we obtain 

(4) 
d N  
-= -( n - 1) N". 
d t  

The solution of this equation is 
N - ( t j =  N ~ i I + N ~ ~ : [ ~ - , ) ~ , j = : ~ ~ ~ ~ : ~  ( 5  j 

where No is the initial value of the total number of clusters. 

function 
Proceeding with the solution to the kinetic equation (2) we introduce the generating 

m 

d Y ,  I ) =  1 ck(t) exp(ky) *=, 
and transform equation (2) into the following: 

Solving (7)  yields 

where N ( t )  is given by (5) a n d f ( y )  is defined from the initial conditions 

For the monodisperse distribution 

Ck(O) = 6 k l  
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we recast the solution (5) and (8) into the form 

N (  I )  =[1 + ( n  -l)'~"'''"-'~ 

g ( y , f ) = N  

( I l a )  

exp(y){l-(l-  N )  exp[(n -l)y])-"("-'). ( I l b )  " / ( " - I 1  

Inversing ( 1  1 b) one can find the cluster-size distribution 

Here r is the gamma function. All the concentrations Ck(t )  with k #  1 (mod n -  1) are 
trivial due to our choice of the initial conditions (10). 

In many recent studies of aggregation phenomena, only one characteristic size S ( t )  
in a system has been observed (for a review, see e.g. Frielander [3]). This rather 
naturally leads to the scaling behaviour 

C'(t) = s-*$(k/s(t)). (13) 
Furthermore, it was observed as a quite general fact that S(r) increases as a power 
law, S(f)-  1'. 

The distribution (12) belongs to the scaling class. Actually, we have 
S = N-'  - f' (14) 

with the scaling exponent z = ( n  - l ) - ' .  In the scaling limit 

k + m  f + m  x = k / S = k N = f i n i t e  (15) 

we can rewrite (12) as follows: 

which proves the scaling nature of the solution (12) and yields the precise expression 
for the scaling function $(x) in (13). 

Furthermore, the general solution (8) also belongs to the scaling class. To prove 
this, we first note that the scaling limit (15) corresponds to 

t + m  y + - 0  U=(-y)S=fini te  (17) 
in (I, y )  variables. Then we expand g(y,  0) and / ( y )  in the vicinity of y = 0 and find 

where MO is the first moment of distribution, i.e. the total mass of the system 
.x 

M =  kC,(t)=M,=constant. (19) 
*=I 

Substituting (18) into the general solution (8), we obtain 

g=S"[ I+M,(n- l )u] - ' ""~"  

in the scaling limit (17) .  Here S =  N - '  as previously. Combining (6)  and (13) and 
replacing the sum in  (6) by the integral, we derive another formula for g(y,  1 )  in the 
scaling limit 

g = s-'!,,dx $(x) exp(-xu). ( 2 1 )  
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Comparing these formulae, we arrive at the following exact solution for the scaling 
function: 

Thus the asymptotic behaviour of the solutions of the generalized Smoluchowski 
equation with constant reaction rates is essentially independent of any features of 
;-:tin! ,,,.-A:+;,.-o "-A -.,,.f.,-* :..+A rh- ....:.mr-nl n,.,,3;..- e,.--. ill\ 
1I,,L,',L1 C"ll"lLl"l lD all" b " " , * C I  llll" L l l C  "III"CLJL1, J L n r r l r g  ,"Cl', ,LA,. 

3. Sum kernel 

We now turn to a model of aggregation by n-body collisions with the sum kernel 

K ( i , ,  . , . , in) = i,+. . .+ i n .  (23) 

Substitution of (23) into the generalized Smoluchowski equation ( I )  yields 

The total number of clusters obeys the following equation: 

The solution of this equation is 

( 2 6 )  

We see that the total number of clusters decreases algebraically as a function of time 
for n > 2, rather than exponentially as for n =2. Thus the model of aggregation by 
n-body cotlisions with the sum kernel a t  n > 2 is much less reactive than the correspond- 
ing binary model. 

Proceeding with the solution of (24), we seek a transformation that will transform 
away the second ierm on  i'ne right-hand side wiihoui spoiiing iiie convoiuiion f i r m  
of the first term. To this end we write the distribution in the form 

-,/("-2l N ( t ) =  N , [ l + n ( n -  I ? ( f l - 2 ? M d ]  

C d f ) = a , ( f )  exp [ - f l  f " ' [ k N " - ' + ( n - I ) M , N " ~ 2 , d f  I (27) 

Substitution of (27) into (24) yields 

Finally we introduce the scaled time variable 

and after simple calculations we obtain the reduced equation 

dox _- - k  I a , ,  , . .  a,,, 
d T  i,+ ...+ i , ,=x 
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The generating function method is useful in solving the system (30). We introduce 

G(Y, T) = a d T )  exp(kv) (31) 
4 

k c l  

then multiply (30) by exp(ky), sum over all k and find 

To solve (32) we introduce the inverse function y = Y (  G, T )  and find a simple equation 

One can find the implicit general solution of this equation 

G(y, T) = G(y+nrG" - ' , o ) .  (34) 

G(y, T)=exp(y+nTC"- ' ) .  (35) 

For the monodisperse initial conditions, G(y, 0) =exp(y), we reduce (34) to 

To obtain the cluster-size distribution, we use the Lagrange expansion of G in a power 
of exp(y). After some algebra, one can obtain the non-zero concentrations 

a , + , ( " - , ) ( T ) = n T ( [ l + k ( n - -  l)]nT)'-'/k!. ( 3 6 )  

Substitution of (26) at No= M O =  1 into (27) and (29) yields 

C, = akN exp(-knT) 

1 - N- T=- 
n(n-1) 

Thus for the monodisperse distribution we arrive at the exact solution 

C , + k , n - l l ( T )  = nNTexp(-[l+ k ( n  - l)]nT)([l+ k ( n  - l ) ] n ~ ) ~ - ' / k !  (39) 
with N and T given by (26) and (38) ,  respectively. This cluster-size distribution belongs 
to the scaling class. Actually, in the scaling limit 

k + m  t+a? x = k N 2 / 2  =finite (40) 
we can rewrite (39) as follows: 

In deriving (41) we employed the relation (38) and Stirling's approximation 

4. Discussion and conclusions 

We have presented an idealized aggregation model of particles coagulating by n-body 
collisions. The model reduces to the usual aggregation process at n = 2. 

In the mean-field limit, n-particle aggregation processes are described by the 
generalized Smoluchowski equation. For the constant kernel, we obtained a general 
solution to this equation and observed the universal scaling behaviour. For the sum 
kernel, we found an implicit general solution and also an explicit exact solution for 
the monodisperse distribution. 
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Much attention has recently been paid to the definition of conditions under which 
systems aggregating by binary collisions are correctly described by the corresponding 
mean-field rate equations [8-14]. The discussion has focused on the value ofthe upper 
critical dimension d,.  For d > d, the mean-field description is valid at all times; for 
d < d, different behaviour is to be expected at f + a3. For the simple chemical reactions 
A+A-inertandA+A+A,theresultis d,=2[8-11]. Kangand Redner[lZ]observed 
that the simplest model K (i, j )  =constant, with constant diffusion coefficients D( k )  = 
D, reduces to the reaction scheme A + A + A  if one considers only the number of 
clusters. Hence, d,= 2 also for this aggregation model. 

We now discuss the simplest constant rate n-particle aggregation model with 
constant diffusion coefficients. In the same fashion, we map this model to the chemical 
reaction A t ,  . . + A  + A and then find the upper critical dimension for this process by 
appropriate generalization of simple dimensional arguments by Toussaint and Wilczek 
[IO]. To this end we write the rate equation for the particle density a f t )  

d a  
df 
- -_  - Ka" 

which has the solution 

a ( t )  = a,[]  +(n - ~)Ka;"t]-"'"-'' 

+[ (n")Kt ] - ' / '" -"  at t -m  

The reaction rate K depends on the diffusion constant D and the size R of particles, 
K = K ( D ,  R ) .  A simple dimensional analysis gives 

On the physical ground, the particle density must be the decreasing function of the 
particle size, i.e. (45) is valid only at d > 2 ( n  - I ) - ' .  Hence 

2 
n-1 d , = -  (46) 

for n-particle aggregation processes with constant reaction rates. Notice, that at d < d, 
the particle density does not depend on R at I - 0 0 .  Therefore a =  n(D,  I )  and 
dimensional analysis yield the universal (i.e. independent of n )  asymptoticdl behaviour 
at d < d , a n d  f+m:  

a(f)-(Df)-"/ ' .  (47) 

We see that the mean-field results of section 2 are valid a t  all times and at all 
dimensions d a  I for n-particle constant reaction kernel when n a 3 ,  with possible 
logarithmic corrections at d = 1 and n = 3. 
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